HW11 - Electrochemical Stoichiometry

Question 1	1.5 pts	Question 5
What is the standard cell potential of a battery made from the half reaction: $2H^+ + 2e^- \longrightarrow H_2$ $E^\circ = 0.00V$ $O_2 + 4H^+ + 4e^- \longrightarrow 2H_2O$ $E^\circ = +1.23 V$	s below?	What is the E° for the following electrochemical cell where Zn is the car Fe Fe ²⁺ (1.0 M) Zn ²⁺ (1.0 M) Zn E° _(Zn) = -0.76, E° _(Fe) = -0.44
0 1.23		○ -0.32
○ -1.23		○ -1.20
O -2.46		O +1.20
○ 2.46		○ +0.32

Question 2

1.5 pts

In an electrolytic cell, the negative terminal is the (cathode/anode) and is the site of the (oxidation/reduction) half-reaction.

cathode, oxidation

anode, oxidation

- anode, reduction
- cathode, reduction
- Question 3

1.5 pts

Consider the galvanic cell:

 $\mathsf{Ag}(s) \mid \mathsf{AgCI}(s) \mid \mathsf{CI}^{\text{-}}(\mathsf{aq}) \mid \mid \mathsf{CI}^{\text{-}}(\mathsf{aq}) \mid \mathsf{Hg}_2\mathsf{CI}_2(s) \mid \mathsf{Hg}(\mathsf{I})$

What is the smallest possible integer coefficient of Ag(s) in the combined balanced equation?

03			
01			
0 4			
0 2			

Question 4	1.5 pts
Silver is plated on copper by immersing a piece of copper into a solution containin (I) ions. In the plating reaction, copper	ıg silver
○ is oxidized and is the oxidizing agent.	
○ is reduced and is the reducing agent.	
○ is reduced and is the oxidizing agent.	
○ is oxidized and is the reducing agent.	

1.5 pts athode?

Question 6

1	.5	pts

Which of the metals in the list below will react with 1M H₂SO₄ to produce hydrogen gas?

Na⁺ + 1e⁻ —→ Na	E° = -2.714
$Cd^{2+} + 2e^{-} \longrightarrow Cd$	E° = -0.403
$Pb^{2+} + 2e^{-} \longrightarrow Pb$	E° = -0.126
$Cu^{2+} + 2e^{-} \longrightarrow Cu$	E° = +0.337

O Na, Cd, and Pb only

O Cu only

O Na, Cd, Pb, and Cu

O Na and Cd only

Question 7			

Consider the voltaic cell:

Pt | Sn²⁺ (0.10 M), Sn⁴⁺ (0.0010 M) || Ag⁺ (0.010 M) | Ag

- $Sn^{4+} + 2e^{-} \longrightarrow Sn^{2+}$ E° = +0.15 V
- $Ag^+ + 1e^- \longrightarrow Ag(s)$ E° = +0.80 V

The electrons flow in the external circuit from...

Ag to Pt

○ Sn²⁺ to Ag⁺

Sn to Ag

O Pt to Ag

Question 8

1.5 pts

1.5 pts

Using the standard potential tables, what is the largest approximate E° value that can be achieved when two half-cell reactions are combined to form a battery?

🔿 -6 V			
() 3 V			
0 6 V			
🔿 -3 V			

HW11 - Electrochemical Stoichiometry

Question 9	1.5 pts	Question 13	2 pts
Consider the cell:		Consider the cell diagram below:	
Zn(s) Zn ²⁺ (aq) Cl ⁻ (aq) AgCl(s) Ag(s)		Mg(s) Mg ²⁺ (ag) Au ⁺ (ag) Au(s)	
Calculate E°.		$Mg^{2+} + 2e^{-} \longrightarrow Mg \qquad E^{\circ} = -2.36$	
○ +0.98 V		$Au^+ + e^- \longrightarrow Au$ $E^\circ = +1.69$	
0 -120 V		What is the cathode and what is the cell type?	
0 +0.54 V		Mg(s); a voltaic cell	
0 +1 20 V		○ Au(s); a voltaic cell	
		○ Au(s); an electrolytic cell	
		∩ Mo(s): an electrolytic cell	
Question 10	2 pts		
Which species will oxidize Cr^{2+} (E° _{red} = -0.407) but not Mn ²⁺ (E° _{red} = +1.22	24)?	Question 14	1.5 pts
○ Fe ²⁺ (E° _{red} = -0.771)			
○ Zn ²⁺ (E° _{red} = -0.762)		Consider the half-reactions: $Mn^{2^+} + 2e^- \rightarrow Mn = E^0 = 1.029 M$	
○ O ₃ in acid (E° _{red} = +2.076)		$Ga^{3+} + 3e^{-} \rightarrow Ga = E^{\circ} = -0.560 V$	
○ V ³⁺ (E° _{red} = -0.255)		$Fe^{2^+} + 2e^- \longrightarrow Fe$ $E^\circ = -0.409 V$	
○ Pb ⁴⁺ (E° _{red} = +1.68)		$Sn^{2+} + 2e^{-} \longrightarrow Sn$ $E^{\circ} = -0.136 V$	
		Using the redox couples to establish a voltaic cell, which reaction would be non-spontaneous?	
Question 11	1.5 pts	\bigcirc 2Ga + 3Sn ²⁺ \longrightarrow 2Ga ³⁺ + 3Sn	
		\bigcirc Fe ²⁺ + Mn \longrightarrow Mn ²⁺ + Fe	
and -0.44 V respectively, which is the strongest reducing agent?	e +0.34, +0.80,	\bigcirc Sn ²⁺ + Mn \longrightarrow Sn + Mn ²⁺	
○ Fe ²⁺		○ 2Ga ³⁺ + 3Fe> 2Ga + 3Fe ²⁺	
○ Cu		\bigcirc Sn ²⁺ + Fe \longrightarrow Sn + Fe ²⁺	
 Ag			
○ Cu ²⁺			
○ Fe		Question 15	1.5 pts
○ Aa ⁺		Find the standard emf of the given cell diagram:	
		Cu(s) Cu ²⁺ (aq) Au ⁺ (aq) Au(s)	
		$Cu^{2+} + 2e^- \longrightarrow Cu$ $E^\circ = +0.34 V$	
Question 12	1.5 pts	$Au^+ + e^- \longrightarrow Au$ $E^\circ = +1.69 V$	
For the coll diagram below:		2.03 V	
Cd(s) CdSQ ₄ (an) Hn ₂ SQ ₄ Hn(l)		+1.35 V	
What reaction occurs at the cathode?		○ -1.35 V	
		→ +2.03 V	
\bigcirc 2Hg(I) + SO ₄ ²⁻ (aq) \longrightarrow Hg ₂ SO ₄ (s) + 2e ⁻			

 $\begin{array}{c} \bigcirc \ \ CdSO_4(s)+2e^{\cdot}\longrightarrow 2Cd(l)+SO_4^{2\cdot}(aq) \\ \\ \bigcirc \ 2Cd(l)+SO_4^{2\cdot}(aq)\longrightarrow CdSO_4(s)+2e^{\cdot} \\ \\ \\ \bigcirc \ \ Hg_2SO_4(s)+2e^{\cdot}\longrightarrow 2Hg(l)+SO_4^{2\cdot}(aq) \end{array}$

HW11 - Electrochemical Stoichiometry

Question 16	2 pts
Which species will REDUCE Ag ⁺ but not Fe ²⁺ ?	
⊖ Cr	
○ Co ²⁺	
ОК	
○ H ₂	

Question 17	1.5 pts

If the table of standard reduction potentials is ordered with the strongest reducing agents at the top, how are the reduction potentials ordered (from top to bottom)?

 $\bigcirc\,$ from most spontaneous to least spontaneous

 $\bigcirc\,$ from most positive to most negative

from most negative to most positive

from most common to least common

Question 18	1.5 pts
Which species is the weakest reducing agent in the table of half-reactions?	
⊖ Li*	
○ F ⁻	
⊖ Li	
○ F ₂	

Question 19	1.5 pts
If the two half-reactions belo be consumed at the anode?	w were used to make an electrolytic cell, what species would
$Au^{3+}(aq) + 3e^{-} \longrightarrow Au(s)$	E° = +1.50
$I_2(s) + 2e^- \longrightarrow 2I^-(aq)$	E° = +0.53
○ I ₂ (s)	
◯ Au ³⁺ (aq)	
O Au(s)	
◯ I⁻(aq)	